## 5.164. inflexion

 DESCRIPTION LINKS AUTOMATON
Origin

N. Beldiceanu

Constraint

$\mathrm{𝚒𝚗𝚏𝚕𝚎𝚡𝚒𝚘𝚗}\left(𝙽,\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}\right)$

Arguments
 $𝙽$ $\mathrm{𝚍𝚟𝚊𝚛}$ $\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}$ $\mathrm{𝚌𝚘𝚕𝚕𝚎𝚌𝚝𝚒𝚘𝚗}\left(\mathrm{𝚟𝚊𝚛}-\mathrm{𝚍𝚟𝚊𝚛}\right)$
Restrictions
 $𝙽\ge 1$ $𝙽\le |\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}|$ $\mathrm{𝚛𝚎𝚚𝚞𝚒𝚛𝚎𝚍}$$\left(\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂},\mathrm{𝚟𝚊𝚛}\right)$
Purpose

$𝙽$ is equal to the number of times that the following conjunctions of constraints hold:

• ${X}_{i}\mathrm{𝙲𝚃𝚁}{X}_{i+1}\wedge {X}_{i}\ne {X}_{i+1}$,

• ${X}_{i+1}={X}_{i+2}\wedge \cdots \wedge {X}_{j-2}={X}_{j-1}$,

• ${X}_{j-1}\ne {X}_{j}\wedge {X}_{j-1}¬\mathrm{𝙲𝚃𝚁}{X}_{j}$.

where ${X}_{k}$ is the ${k}^{th}$ item of the $\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}$ collection and $1\le i,i+2\le j,j\le n$ and $\mathrm{𝙲𝚃𝚁}$ is $<$ or $>$.

Example
$\left(\begin{array}{c}3,〈\begin{array}{c}\mathrm{𝚟𝚊𝚛}-1,\hfill \\ \mathrm{𝚟𝚊𝚛}-1,\hfill \\ \mathrm{𝚟𝚊𝚛}-4,\hfill \\ \mathrm{𝚟𝚊𝚛}-8,\hfill \\ \mathrm{𝚟𝚊𝚛}-8,\hfill \\ \mathrm{𝚟𝚊𝚛}-2,\hfill \\ \mathrm{𝚟𝚊𝚛}-7,\hfill \\ \mathrm{𝚟𝚊𝚛}-1\hfill \end{array}〉\hfill \end{array}\right)$

The $\mathrm{𝚒𝚗𝚏𝚕𝚎𝚡𝚒𝚘𝚗}$ constraint holds since the sequence $11488271$ contains three inflexions peaks that respectively correspond to values 8, 2 and 7.

##### Figure 5.164.1. The sequence $11488271$ and its three inflexions Typical
 $𝙽>0$ $|\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}|>2$ $\mathrm{𝚛𝚊𝚗𝚐𝚎}$$\left(\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}.\mathrm{𝚟𝚊𝚛}\right)>1$
Symmetries
• Items of $\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}$ can be reversed.

• One and the same constant can be added to the $\mathrm{𝚟𝚊𝚛}$ attribute of all items of $\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}$.

Usage

Useful for constraining the number of inflexions of a sequence of domain variables.

Remark

Since the arity of the arc constraint is not fixed, the $\mathrm{𝚒𝚗𝚏𝚕𝚎𝚡𝚒𝚘𝚗}$ constraint cannot be currently described. However, this would not hold anymore if we were introducing a slot that specifies how to merge adjacent vertices of the final graph.

See also
Keywords
Automaton

Figure 5.164.2 depicts the automaton associated with the $\mathrm{𝚒𝚗𝚏𝚕𝚎𝚡𝚒𝚘𝚗}$ constraint. To each pair of consecutive variables $\left({\mathrm{𝚅𝙰𝚁}}_{i},{\mathrm{𝚅𝙰𝚁}}_{i+1}\right)$ of the collection $\mathrm{𝚅𝙰𝚁𝙸𝙰𝙱𝙻𝙴𝚂}$ corresponds a signature variable ${𝚂}_{i}$. The following signature constraint links ${\mathrm{𝚅𝙰𝚁}}_{i}$, ${\mathrm{𝚅𝙰𝚁}}_{i+1}$ and ${𝚂}_{i}$: $\left({\mathrm{𝚅𝙰𝚁}}_{i}>{\mathrm{𝚅𝙰𝚁}}_{i+1}⇔{𝚂}_{i}=0\right)\wedge \left({\mathrm{𝚅𝙰𝚁}}_{i}={\mathrm{𝚅𝙰𝚁}}_{i+1}⇔{𝚂}_{i}=1\right)\wedge \left({\mathrm{𝚅𝙰𝚁}}_{i}<{\mathrm{𝚅𝙰𝚁}}_{i+1}⇔{𝚂}_{i}=2\right)$.

##### Figure 5.164.2. Automaton of the $\mathrm{𝚒𝚗𝚏𝚕𝚎𝚡𝚒𝚘𝚗}$ constraint ##### Figure 5.164.3. Hypergraph of the reformulation corresponding to the automaton of the $\mathrm{𝚒𝚗𝚏𝚕𝚎𝚡𝚒𝚘𝚗}$ constraint 