## 5.137. geq_cst

 DESCRIPTION LINKS
Origin

Arithmetic.

Constraint

$\mathrm{𝚐𝚎𝚚}_\mathrm{𝚌𝚜𝚝}\left(\mathrm{𝚅𝙰𝚁}\mathtt{1},\mathrm{𝚅𝙰𝚁}\mathtt{2},\mathrm{𝙲𝚂𝚃}\mathtt{2}\right)$

Arguments
 $\mathrm{𝚅𝙰𝚁}\mathtt{1}$ $\mathrm{𝚍𝚟𝚊𝚛}$ $\mathrm{𝚅𝙰𝚁}\mathtt{2}$ $\mathrm{𝚍𝚟𝚊𝚛}$ $\mathrm{𝙲𝚂𝚃}\mathtt{2}$ $\mathrm{𝚒𝚗𝚝}$
Purpose

Enforce the fact that the first variable is greater than or equal to the sum of the second variable and the constant.

Example
$\left(8,1,7\right)$

The $\mathrm{𝚐𝚎𝚚}_\mathrm{𝚌𝚜𝚝}$ constraint holds since 8 is greater than or equal to $1+7$.

Typical
$\mathrm{𝚅𝙰𝚁}\mathtt{1}>\mathrm{𝚅𝙰𝚁}\mathtt{2}+\mathrm{𝙲𝚂𝚃}\mathtt{2}$
Symmetries
• Arguments are permutable w.r.t. permutation $\left(\mathrm{𝚅𝙰𝚁}\mathtt{1}\right)$ $\left(\mathrm{𝚅𝙰𝚁}\mathtt{2},\mathrm{𝙲𝚂𝚃}\mathtt{2}\right)$.

• $\mathrm{𝚅𝙰𝚁}\mathtt{1}$ can be replaced by any value $\ge \mathrm{𝚅𝙰𝚁}\mathtt{2}+\mathrm{𝙲𝚂𝚃}\mathtt{2}$.

• $\mathrm{𝚅𝙰𝚁}\mathtt{2}$ can be replaced by any value $\le \mathrm{𝚅𝙰𝚁}\mathtt{1}-\mathrm{𝙲𝚂𝚃}\mathtt{2}$.

• $\mathrm{𝙲𝚂𝚃}\mathtt{2}$ can be replaced by any value $\le \mathrm{𝚅𝙰𝚁}\mathtt{1}-\mathrm{𝚅𝙰𝚁}\mathtt{2}$.

See also

specialisation: $\mathrm{𝚐𝚎𝚚}$ ($\mathrm{𝚌𝚘𝚗𝚜𝚝𝚊𝚗𝚝}$ set to 0).

Keywords