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5.298 smooth

DESCRIPTION LINKS GRAPH AUTOMATON
Origin Derived fromchange.
Constraint smooth(NCHANGE, TOLERANCE, VARIABLES)
Arguments NCHANGE . dvar

TOLERANCE : int
VARIABLES : collection(var—dvar)

Restrictions NCHANGE > 0
NCHANGE < |VARIABLES)|
TOLERANCE > 0
required(VARIABLES, var)

NCHANGE is the number of times th4X — Y| > TOLERANCE holds; X andY” corresponc

Purpose . ) .
to consecutive variables of the collectiGARIABLES.
Example (1,2,(1,3,4,5,2))
In the example we have one change between valuesd 2 since the difference in
absolute value is greater than the tolerance (be- 2| > 2). Consequently thECHANGE
argument is fixed td and thesmooth constraint holds.
Symmetries e |tems Of VARIABLES can bereversed
e One and the same constant candizledto the var attribute of all items of
VARIABLES.
Usage This constraint is useful for the following problems:

e Assume thaVARIABLES corresponds to the number of people that work on consec-
utive weeks. One may not normally increase or decrease tmticklly the number
of people from one week to the next week. With ta@oth constraint you can state
a limit on the number of drastic changes.

e Assume you have to produce a set of orders, each order hawpgcific attribute.
You want to generate the orders in such a way that there is toat hig difference
between the values of the attributes of two consecutiversrdéyou can'’t achieve
this on two given specific orders, this would imply a set-up gpst. Again, with the
smooth constraint, you can control this kind of drastic changes.

Algorithm A firstincomplete algorithm is described ifq]. The sketch of a filtering algorithm for the

conjunction of thesmooth and thestretch constraints based arfynamic programming
achieving arc-consistencyis mentioned by Lars Hellsten in1§4, page 60]. An
arc-consistencalgorithm in linear time of the sum of domain sizes is desatim [47].



Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.


Constraint
The constraint name and its arguments.


Arguments
Arguments of the constraint and their corresponding types.


Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.


Purpose
Definition in natural language of the meaning of the constraint.


Example
One or several examples of ground solutions of the constraint.


Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.


Usage
Typical usage of the constraint.


Algorithm
References (or short description) to the filtering algorithm attached to the constraint.


See also

Keywords
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common keyword: change (number of changes in a sequence with respect to a binary
constraint).

related: distance.

characteristic of a constraint: automaton automaton with counters
non-deterministic automatpnon-deterministic automaton

constraint network structure: sliding cyclic(1) constraint network(2)
Berge-acyclic constraint netwark

constraint type: timetabling constraint

filtering: dynamic programmingarc-consistency
modelling: number of changes

modelling exercisesn-Amazon
puzzles:n-Amazon



See also
Related constraints grouped by semantics links.


Keywords
Related keywords grouped by meta-keywords.


1550 NARC, PATH ; AUTOMATON

Arc input(s) VARIABLES
Arc generator PATHwscollection(variablesl, variables?2)
Arc arity 2
Arc constraint(s) abs(variablesl.var — variables2.var) > TOLERANCE
Graph property(ies) NARC= NCHANGE
Graph model Parts (A) and (B) of Figuré.536respectively show the initial and final graph associated

with the Example slot. Since we use thlNARC graph property, the unique arc of the
final graph is stressed in bold.

VARIABLES

NARC=1
(A) (B)

Figure 5.536: Initial and final graph of th@ooth constraint



Graph model
Explicit description in terms of graph property of the meaning of the constraint.


Automaton
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Figure5.537 depicts a first automaton that only accepts all the solutafitbe smooth
constraint. This automaton uses a counter in order to rett@rdumber of satisfied con-
straints of the form(|VAR; — VAR, 1|) > TOLERANCE already encountered. To each pair
of consecutive variable§VAR;, VAR;41) of the collectionVARIABLES corresponds &-

1 signature variables;. The following signature constraint linK&AR;, VAR, 1 andS;:
(|[VAR; — VAR;41]) > TOLERANCE < S; = 1.

{c=0}

IVAR,-VAR, ,|>TOLERANCE, IVAR,-VAR, |z=TOLERANCE
{C=C+1}

Figure 5.537: Automaton (with a counter) of thigooth constraint

Figure 5.538: Hypergraph of the reformulation correspngdo the automaton (with
a counter) of themooth constraint

Since the reformulation associated with the previous aatomis notBerge-acyclic we
now describe a second counter free automaton that also oospts all the solutions of
the smooth constraint. Without loss of generality, assume that th&ectbn of variables
VARIABLES contains at least two variables (i.f/ARIABLES| > 2). Letn, min, maz, and

D respectively denote the number of variables of the cotbectiARIABLES, the smallest
value that can be assigned to the variable¥ARIABLES, the largest value that can be
assigned to the variables ARIABLES, and the union of the domains of the variables
of VARIABLES. Clearly, the maximum number of changes (i.e., the numbeinafs the
constraint(|[VAR; —VAR;41|) > TOLERANCE (1 < ¢ < n) holds) cannot exceed the quantity
m = min(n— 1, NCHANGE). The(m+1)-|D|+2 states of the automaton that only accepts
all the solutions of themooth constraint are defined in the following way:

e We have an initial state labelled by.

e We havem - |D| intermediate states labelled by; (i € D, j € [0, m]). The first
subscript; of states;; corresponds to the value currently encountered. The second
subscriptj denotes the number of already encountered satisfied constcd the
form (JVAR, — VAR,1|) > TOLERANCE from the initial states; to the states; ;.

e We have a final state labelled by:.

Four classes of transitions are respectively defined inadhasing way:



Automaton
Explicit description in terms of automaton of the meaning of the constraint.
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1. There is a transition, labelled byrom the initial states; to the states;o, (i € D).

2. There is a transition, labelled by from every state;;, (i € D, j € [0, m]), to the
final statesr.

3. Vi € D, Vj € [0,m], Yk € DN [max(min,i — TOLERANCE), min(maz,? +
TOLERANCE)] there is a transition labelled by from s;; to si; (i.e., the countey
does not change for valuéshat are too closed from valug

4. Vi e D, Vj € [0,m — 1], Vk € D \ [max(min, i — TOLERANCE), min(maz, ¢ +
TOLERANCE)] there is a transition labelled Byfrom s;; to sx;1 (i.e., the countey
is incremented by-1 for valuesk that are too far from).

We have|D| transitions of typd., |D| - (m 4+ 1) transitions of type2, and at leastD|* - m
transitions of type8 and4. Since the maximum value of is equal ton — 1, in the worst
case we have at lealdd|® - (n — 1) transitions. This leads to a worst case time complexity
of O(|D|? - n?) if we use Pesant’s algorithm for filtering thegular constraint P79,

Figure5.539depicts the corresponding counter free non deterministicraaton associ-
ated with thesmooth constraint under the hypothesis that (1) all variableSARIABLES
are assigned a value {0, 1,2, 3}, (2) |[VARIABLES| is equal to4, and (3)TOLERANCE is
equal tol.
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The sequence of variables i
VAR VAR, VAR, VAR, NCHANGE

|s passed to the automaton

Figure 5.539: Counter free non deterministic automaton dfie t
smooth(NCHANGE, 1, (VAR4, VARy, VAR3, VAR,)) constraint assumingAR;, € [0, 3]
(1 <4 < 3), with initial states; and final state



