elements_alldifferent 5.125

	DESCRIPTION	LINKS	GRAPH
Origin	Derived from elements and alldiffe	erent.	
Constraint	${\tt elements_all different} ({\tt ITEMS}, {\tt TAIR}$	BLE)	
Synonyms	elements_alldiff, elements_alld:	istinct.	
Arguments	ITEMS : collection(index-dv TABLE : collection(index-in		
Restrictions	$\begin{array}{l} \textbf{required}(\textbf{ITEMS}, [\textbf{index}, \textbf{value}]) \\ \textbf{ITEMS}. \textbf{index} \geq 1 \\ \textbf{ITEMS}. \textbf{index} \leq \textbf{TABLE} \\ \textbf{ITEMS} = \textbf{TABLE} \\ \textbf{required}(\textbf{TABLE}, [\textbf{index}, \textbf{value}]) \\ \textbf{TABLE}. \textbf{index} \geq 1 \\ \textbf{TABLE}. \textbf{index} \leq \textbf{TABLE} \\ \textbf{distinct}(\textbf{TABLE}, \textbf{index}) \end{array}$		
Purpose	All the items of the ITEMS collection TABLE and all the variables ITEMS.inc		

```
Example
```

```
{\tt index}-2 \quad {\tt value}-9,
\begin{array}{l} \verb|index| - 1 \\ \verb|index| - 4 \end{array}
                  value - 6,
                  value - 9,
{\tt index}-3
                  value - 2
{\tt index}-1
                   value - 6,
{\tt index}-2
                   value - 9,
{\tt index}-3
                   value - 2,
                   \mathtt{value} - 9
{\tt index}-4
```

The elements_alldifferent constraint holds since, as depicted by Figure 5.256, there is a one to one correspondence between the items of the ITEMS collection and the items of the TABLE collection.

```
index-2 value-9 index-1 value-6
                            √index-1
index-2
                                         value-6
                                        value-9
          value-9 -
index-4
                             -index-3
                                        value-2
                            Tindex-4
          value-2
index-3
                                        value-9
      ITEMS
```

Figure 5.256: Illustration of the one to one correspondence between the items of ITEMS and the items of TABLE

20030820 899

Typical

```
\begin{split} |\mathtt{ITEMS}| &> 1 \\ &\mathtt{range}(\mathtt{ITEMS.value}) > 1 \\ |\mathtt{TABLE}| &> 1 \\ &\mathtt{range}(\mathtt{TABLE.value}) > 1 \end{split}
```

Symmetries

- Arguments are permutable w.r.t. permutation (ITEMS, TABLE).
- Items of ITEMS are permutable.
- Items of TABLE are permutable.
- All occurrences of two distinct values in ITEMS.value or TABLE.value can be swapped; all occurrences of a value in ITEMS.value or TABLE.value can be renamed to any unused value.

Usage

Used for replacing by one single elements_alldifferent constraint an alldifferent and a set of element constraints having the following structure:

- The union of the index variables of the element constraints is equal to the set of variables of the alldifferent constraint.
- All the element constraints share exactly the same table.

For instance, the constraint given in the **Example** slot is equivalent to the conjunction of the following set of constraints:

```
alldifferent(\langle var - 2, var - 1, var - 4, var - 3 \rangle)
```

$$\begin{array}{c} \text{element} \left(\begin{array}{c} \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9 \\ \text{index} - 1 & \text{value} - 6, \\ \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9, \\ \text{index} - 3 & \text{value} - 2, \\ \text{index} - 4 & \text{value} - 9 \end{array} \right) \end{array} \right) \\ \\ \text{element} \left(\begin{array}{c} \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 6 \\ \right\rangle, \\ \text{index} - 1 & \text{value} - 6, \\ \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 6, \\ \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9, \\ \text{index} - 3 & \text{value} - 2, \\ \left\langle \begin{array}{c} \text{index} - 4 & \text{value} - 9, \\ \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9, \\ \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9, \\ \left\langle \begin{array}{c} \text{index} - 3 & \text{value} - 2, \\ \left\langle \begin{array}{c} \text{index} - 4 & \text{value} - 9 \\ \end{array} \right\rangle \end{array} \right) \end{array} \right) \\ \\ \text{element} \left(\begin{array}{c} \left\langle \begin{array}{c} \text{index} - 4 & \text{value} - 9, \\ \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 6, \\ \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 6, \\ \\ \left\langle \begin{array}{c} \text{index} - 1 & \text{value} - 9, \\ \\ \end{array} \right\rangle \end{array} \right) \end{array} \right) \\ \\ \text{element} \left(\begin{array}{c} \left\langle \begin{array}{c} \text{index} - 4 & \text{value} - 9, \\ \\ \left\langle \begin{array}{c} \text{index} - 2 & \text{value} - 9, \\ \\ \end{array} \right\rangle \right) \\ \\ \text{index} - 3 & \text{value} - 2, \\ \\ \text{index} - 4 & \text{value} - 2, \\ \\ \end{array} \right) \end{array} \right) \\ \\ \end{array} \right)$$

As a practical example of utilisation of the elements_alldifferent constraint we show how to model the link between a permutation consisting of one single cycle and its expanded form. For instance, to the permutation 3,6,5,2,4,1 corresponds the sequence $3\ 5\ 4\ 2\ 6\ 1$. Let us note S_1,S_2,S_3,S_4,S_5,S_6 the permutation and $V_1V_2V_3V_4V_5V_6$ its expanded form (see Figure 5.257).

The constraint:

```
\left(\begin{array}{cccc} & \text{index} - V_1 & \text{value} - V_2, \\ & \text{index} - V_2 & \text{value} - V_3, \\ & \left(\begin{array}{cccc} & \text{index} - V_3 & \text{value} - V_4, \\ & \text{index} - V_3 & \text{value} - V_4, \\ & \text{index} - V_4 & \text{value} - V_5, \\ & \text{index} - V_5 & \text{value} - V_6, \\ & \text{index} - V_6 & \text{value} - V_1 \\ & \text{index} - 1 & \text{value} - S_1, \\ & \text{index} - 2 & \text{value} - S_2, \\ & \left(\begin{array}{cccc} & \text{index} - 3 & \text{value} - S_2, \\ & \text{index} - 4 & \text{value} - S_4, \\ & \text{index} - 5 & \text{value} - S_5, \\ & \text{index} - 6 & \text{value} - S_6, \end{array}\right)
```

models the fact that $S_1, S_2, S_3, S_4, S_5, S_6$ corresponds to a permutation with one single cycle. It also expresses the link between the variables $S_1, S_2, S_3, S_4, S_5, S_6$ and $V_1, V_2, V_3, V_4, V_5, V_6$.

Figure 5.257: Two representations of a permutation containing one single cycle

Reformulation

The elements_alldifferent($\langle \text{index} - I_1 \text{ value} - V_1, \text{index} - I_2 \text{ value} - V_2, \ldots, \text{index} - I_{|\text{ITEMS}|} \rangle$, TABLE) constraint can be expressed in term of a conjunction of |ITEMS| elem constraints and of one alldifferent constraint of the form:

```
\begin{split} & \mathbf{elem}(\langle \mathbf{index} - I_1 \ \mathbf{value} - V_1 \rangle, \mathbf{TABLE}), \\ & \mathbf{elem}(\langle \mathbf{index} - I_2 \ \mathbf{value} - V_2 \rangle, \mathbf{TABLE}), \\ & \dots \\ & \mathbf{elem}(\langle \mathbf{index} - I_{|\mathbf{ITEMS}|} \ \mathbf{value} - V_{|\mathbf{ITEMS}|} \rangle, \mathbf{TABLE}), \\ & \mathbf{alldifferent}(\langle I_1, I_2, \dots, I_{|\mathbf{ITEMS}|} \rangle). \end{split}
```

See also

implies: elements.

used in reformulation: all different, elem, element.

20030820 901

Keywords characteristic of a constraint: disequality.

combinatorial object: permutation.
constraint type: data constraint.

modelling: array constraint, table, functional dependency.

Arc input(s)	ITEMS TABLE	
Arc generator	$PRODUCT \mapsto \texttt{collection}(\texttt{items}, \texttt{table})$	
Arc arity	2	
Arc constraint(s)	items.index = table.indexitems.value = table.value	
Graph property(ies)	NVERTEX = ITEMS + TABLE	

Graph model

The fact that all variables ITEMS.index are pairwise different is derived from the conjunctions of the following facts:

- From the graph property **NVERTEX** = |ITEMS| + |TABLE| it follows that all vertices of the initial graph belong also to the final graph,
- A vertex v belongs to the final graph if there is at least one constraint involving v that holds,
- ullet From the first condition items.index = table.index of the arc constraint, and from the restriction distinct(TABLE.index) it follows: for all vertices v generated from the collection ITEMS at most one constraint involving v holds.

Parts (A) and (B) of Figure 5.258 respectively show the initial and final graph associated with the **Example** slot. Since we use the **NVERTEX** graph property, the vertices of the final graph are stressed in bold.

Figure 5.258: Initial and final graph of the elements_alldifferent constraint

Signature

Since the final graph cannot have more than |ITEMS| + |TABLE| vertices one can simplify $\overline{NVERTEX}$ to $\overline{NVERTEX}$.

20030820 903