
716 NARC,SELF ;PRODUCT , SUCC

5.82 cumulative

DESCRIPTION LINKS GRAPH AUTOMATON

Origin [1]

Constraint cumulative(TASKS, LIMIT)

Synonym cumulative max.

Arguments TASKS : collection









origin−dvar,

duration−dvar,

end−dvar,

height−dvar









LIMIT : int

Restrictions require at least(2, TASKS, [origin, duration, end])
required(TASKS, height)
TASKS.duration ≥ 0
TASKS.origin ≤ TASKS.end

TASKS.height ≥ 0
LIMIT ≥ 0

Purpose

Cumulative scheduling constraint or scheduling under resource constraints. Consider a
setT of tasks described by theTASKS collection. Thecumulative constraint enforces
that at each point in time, the cumulated height of the set of tasks that overlap that point,
does not exceed a given limit. A task overlaps a pointi if and only if (1) its origin is less
than or equal toi, and (2) its end is strictly greater thani. It also imposes for each task
of T the constraintorigin+ duration = end.

Example













〈

origin− 1 duration − 3 end− 4 height − 1,
origin− 2 duration − 9 end− 11 height − 2,
origin− 3 duration − 10 end− 13 height − 1,
origin− 6 duration − 6 end− 12 height − 1,
origin− 7 duration − 2 end− 9 height − 3

〉

, 8













Figure 5.165 shows the cumulated profile associated with the example. To each
task of thecumulative constraint corresponds a set of rectangles coloured with the
same colour: the sum of the lengths of the rectangles corresponds to the duration of
the task, while the height of the rectangles (i.e., all the rectangles associated with a
task have the same height) corresponds to the resource consumption of the task. The
cumulative constraint holds since at each point in time we do not have a cumulated
resource consumption strictly greater than the upper limit8 enforced by the last argument
of thecumulative constraint.

Origin
The origin of the constraint: reference to a paper, to a person, to an other constraint or to a system.

Constraint
The constraint name and its arguments.

Synonym
A synonym for the name of the constraint.

Arguments
Arguments of the constraint and their corresponding types.

Restrictions
Additional conditions refining the type declarations of one or several arguments of the constraint.

Purpose
Definition in natural language of the meaning of the constraint.

Example
One or several examples of ground solutions of the constraint.

20000128 717

Typical |TASKS| > 1
range(TASKS.origin) > 1
range(TASKS.duration) > 1
range(TASKS.end) > 1
range(TASKS.height) > 1
TASKS.duration > 0
TASKS.height > 0
LIMIT <sum(TASKS.height)

Symmetries • Items ofTASKS arepermutable.

• TASKS.height can bedecreasedto any value≥ 0.

• One and the same constant can beaddedto theorigin andend attributes of all
items ofTASKS.

• LIMIT can beincreased.

Remark In the originalcumulative constraint ofCHIP theLIMIT parameter was a domain vari-
able corresponding to themaximum peak of the resource consumption profile. Given a fixed
time frame, this variable could be used as a cost in order to directly minimise the maximum
resource consumption peak.

Some systems like Ilog CP Optimizer also assume that a zero-duration task overlaps a point
i if and only if (1) its origin is less than or equal toi, and (2) its end is greater than or equal
to i. Under this definition, the height of a zero-duration task isalso taken into account in
the resource consumption profile.

Note that the concept of cumulative isdifferent from the concept of rectangles
non-overlapping even if, most of the time, each task of a ground solution of acumulative
constraint is simply drawn as a single rectangle. As illustrated by Figure5.206, this is
in fact not always possible (i.e., some rectangles may need to be broken apart). In fact
the cumulative constraint is only a necessary condition for rectangles non-overlapping
(see Figure5.205and the corresponding explanation in theAlgorithm slot of thediffn
constraint).

Algorithm The first filtering algorithms were related to the notion ofcompulsory partof a task [223].
They compute a cumulated resource profile of all thecompulsory partsof the tasks and

time6 7 8 9 10 11 12

< 9

am
ou

nt
 o

f r
es

ou
rc

e

1

1 4

4

1 2 3 4 5

3

5

3

2

1

Figure 5.165: Resource consumption profile

Typical
Typical conditions on the arguments of the constraint.

Symmetries
List of mappings (e.g., permutation of arguments, permutation of items, permutation of attributes, permutation of values, translation of attributes) that preserve the solutions of the constraint.

Remark
Miscellaneous comments about the constraint that do not fit in the other slots.

http://www.cosytec.com

Algorithm
References (or short description) to the filtering algorithm attached to the constraint.

718 NARC,SELF ;PRODUCT , SUCC

prune the origins of the tasks with respect to this profile in order to not exceed the resource
capacity. These methods are sometimes calledtime tabling. Even if these methods are quite
local, i.e., a task has a non-empty compulsory part only whenthe difference between its
latest start and its earliest start is strictly less than itsduration, it scales well and is therefore
widely used. Later on, more global algorithms4 based on the resource consumption of the
tasks on specific intervals were introduced [135, 94, 236]. A popular variant, callededge
finding, considers only specific intervals [254]. An efficient implementation of edge finding
in O(kn log n), wherek is the number of distinct task heights andn is the number of tasks,
based on a specific data structure, so called acumulativeΦ-tree[396], is provided in [395].
A O(n2 log n) filtering algorithm based on tasks that can not be the earliest (or not be the
latest) is described in [341].

Within the context of linear programming, the reference [191] provides a relaxation of the
cumulative constraint.

A necessary condition for thecumulative constraint is obtained by stating a
disjunctive constraint on a subset of tasksT such that, for each pair of tasks ofT ,
the sum of the two corresponding minimum heights is strictlygreater thanLIMIT. This can
be done by applying the following procedure:

• Leth be the smallest minimum height strictly greater than⌊ LIMIT

2
⌋ of the tasks of the

cumulative constraint. If no such task exists then the procedure is stopped without
stating anydisjunctive constraint.

• Let Th denote the set of tasks of thecumulative constraint for which the minimum
height is greater than or equal toh. By construction, the tasks ofTh cannot overlap.
But we can eventually add one more task as shown by the next step.

• When it exists, we can add one task that does not belong toTh and such that its
minimum height is strictly greater thanLIMIT− h. Again, by construction, this task
cannot overlap all the tasks ofTh.

When the tasks are involved in severalcumulative constraints more sophisticated meth-
ods are available for extractingdisjunctive constraints [16, 15].

In the context where, both the duration and height of all the tasks are fixed, [33] pro-
vides two kinds of additional filtering algorithms that are specially useful when the slackσ
(i.e., the difference between the available space and the sum of the surfaces of the tasks) is
very small:

• The first one introduces bounds for the so calledcumulative longest hole problem.
Given an integerǫ that does not exceed the resource limit, and a subset of tasks
T ′ for which the resource consumption is a mostǫ, the cumulative longest hole
problem is to find the largest integerlmax

ǫ

σ(T
′) such that there is a cumulative

placement of maximum heightǫ involving a subset of tasks ofT ′ where, on one
interval[i, i+ lmax

ǫ

σ(T
′)−1] of the cumulative profile, the area of the empty space

does not exceedσ.

• The second one useddynamic programmingfor filtering so calledbalancing knap-
sack constraints. When the slack is0, such constraints express the fact that the total
height of tasks ending at instanti must equal the total height of tasks starting at
instanti. Such constraints can be generalized to non-zero slack.

4Even if these more global algorithms usually can prune more early in the search tree, these algorithms
do not catch all deductions derived from the cumulated resource profile of compulsory parts.

20000128 719

Systems cumulativeMax in Choco, cumulative in Gecode, cumulative in JaCoP,
cumulative in SICStus.

See also assignment dimension added: coloured cumulatives (sum of task heights

replaced by number of distinct colours, assignment dimension added),
cumulatives (negativeheights allowed andassignment dimensionadded).

common keyword: calendar (scheduling constraint),
coloured cumulative (resource constraint, sum of task heights replaced
by number of distinct values), coloured cumulatives (resource constraint),
cumulative convex (resource constraint, task defined by a set ofpoints),
cumulative product (resource constraint, sum oftask heights replaced by product
of task heights), cumulative with level of priority (resource constraint, a
cumulative constraint for each set oftasks having a priority less than or equal to a
given threshold).

generalisation:cumulative two d (task replaced byrectangle with aheight).

implied by: diffn (cumulative is a neccessary condition for each dimension of the
diffn constraint).

related: lex chain less, lex chain lesseq (lexicographic ordering on the origins of
tasks, rectangles, . . .), ordered global cardinality (controlling the shape of the
cumulative profile for breaking symmetry).

soft variant: soft cumulative.

specialisation:atmost (task replaced byvariable), bin packing (all tasks have a
duration of 1 and a fixedheight), disjunctive (all tasks have aheight of 1).

used in graph description:sum ctr.

Keywords characteristic of a constraint: core, automaton, automaton with array of counters.

complexity: sequencing with release times and deadlines.

constraint type: scheduling constraint, resource constraint, temporal constraint.

filtering: linear programming, dynamic programming, compulsory part,
cumulative longest hole problems, Phi-tree.

modelling: zero-duration task.

problems: producer-consumer.

puzzles:squared squares.

Systems
References to the constraint in some concrete constraint programming systems.

http://www.emn.fr/z-info/choco-solver/tex/documentation/choco-doc.pdf
http://choco.emn.fr/
http://www.gecode.org/doc-latest/reference/group__TaskModelScheduling.html
http://www.gecode.org/
http://jacopapi.osolpro.com/JaCoP/constraints/Cumulative.html
http://www.jacop.eu/
http://www.sics.se/sicstus/docs/latest4/html/sicstus.html/Combinatorial-Constraints.html
http://www.sics.se/sicstus/

See also
Related constraints grouped by semantics links.

Keywords
Related keywords grouped by meta-keywords.

720 NARC,SELF ;PRODUCT , SUCC

Arc input(s) TASKS

Arc generator SELF 7→collection(tasks)

Arc arity 1

Arc constraint(s) tasks.origin+ tasks.duration = tasks.end

Graph property(ies) NARC= |TASKS|

Arc input(s) TASKS TASKS

Arc generator PRODUCT 7→collection(tasks1, tasks2)

Arc arity 2

Arc constraint(s) • tasks1.duration > 0
• tasks2.origin ≤ tasks1.origin

• tasks1.origin < tasks2.end

Graph class • ACYCLIC

• BIPARTITE

• NO LOOP

Sets SUCC 7→




source,

variables − col

(

VARIABLES−collection(var−dvar),
[item(var− TASKS.height)]

)





Constraint(s) on sets sum ctr(variables,≤, LIMIT)

Graph model The first graph constraint enforces for each task the link between its origin, its duration and
its end. The second graph constraint makes sure, for each time pointt corresponding to
the start of a task, that the cumulated heights of the tasks that overlapt does not exceed the
limit of the resource.

Parts (A) and (B) of Figure5.166respectively show the initial and final graph associated
with the second graph constraint of theExampleslot. On the one hand, each source vertex
of the final graph can be interpreted as a time point. On the other hand the successors of
a source vertex correspond to those tasks that overlap that time point. Thecumulative
constraint holds since for each successor setS of the final graph the sum of the heights of
the tasks inS does not exceed the limitLIMIT = 8.

Signature SinceTASKS is the maximum number of vertices of the final graph of the firstgraph con-
straint we can rewriteNARC = |TASKS| to NARC ≥ |TASKS|. This leads to simplify
NARC toNARC.

Graph model
Explicit description in terms of graph property of the meaning of the constraint.

Signature
Provides some explanations about the graph based signature of the constraint.

20000128 721

(A)

TASKS

TASKS

1

12 345

2345

(B)

TASKS

TASKS

1:1,3,4,1

1:1,3,4,1

2:2,9,11,2

2:2,9,11,2

3:3,10,13,1

3:3,10,13,1

4:6,6,12,1

4:6,6,12,1

5:7,2,9,3

5:7,2,9,3

Figure 5.166: Initial and final graph of thecumulative constraint

722 NARC,SELF ;PRODUCT , SUCC

Automaton Figure5.167depicts the automaton associated with thecumulative constraint. To each
item of the collectionTASKS corresponds a signature variableSi that is equal to1.

arith_sliding(C,<=,LIMIT)

i i i

{C[ORI]=C[ORI]+HEIGHT ,i i i

1,

{C[_]=0}

s:

{C[END]=C[END]−HEIGHT }

Figure 5.167: Automaton of thecumulative constraint

Automaton
Explicit description in terms of automaton of the meaning of the constraint.

20000128 723

