
Integrating Strong Local Consistencies into
Constraint Solvers?

Julien Vion12, Thierry Petit, and Narendra Jussien3

1 Univ Lille Nord de France, F-59500 Lille, France
2 UVHC, LAMIH FRE CNRS 3304, F-59313 Valenciennes, France

julien.vion@univ-valenciennes.fr

3 École des Mines de Nantes,
LINA UMR CNRS 6241,

4, rue Alfred Kastler, 44307 Nantes, France.
thierry.petit@mines-nantes.fr, narendra.jussien@mines-nantes.fr

Abstract. This article presents a generic scheme for adding strong local
consistencies to the set of features of constraint solvers, which is notably
applicable to event-based constraint solvers. We encapsulate a subset of
constraints into a global constraint. This approach allows a solver to
use different levels of consistency for different subsets of constraints in
the same model. Moreover, we show how strong consistencies can be
applied with different kinds of constraints, including user-defined con-
straints. We experiment our technique with a coarse-grained algorithm
for Max-RPC, called Max-RPCrm, and a variant of it, L-Max-RPCrm.
Experiments confirm the interest of strong consistencies for Constraint
Programming tools.

1 Introduction

This paper presents a generic framework for integrating strong local consistencies
into Constraint Programming (CP) tools, especially event-based solvers. It is
successfully experimented using Max-RPCrm and L-Max-RPCrm, recent coarse-
grained algorithms for Max-RPC and a variant of this consistencyÂ [25].

The most successful techniques for solving problems with CP are based on
local consistencies. Local consistencies remove values or assignments that cannot
belong to a solution. To enforce a given level of local consistency, propagators
are associated with constraints. A propagator is complete when it eliminates all
the values that cannot satisfy the constraint. One of the reasons for which CP is
currently applied with success to real-world problems is that some propagators
are encoded through filtering algorithms, which exploit the semantics of the
constraints. Filtering algorithms are often derived from well-known Operations
Research techniques. This provides powerful implementations of propagators.
? This work was supported by the ANR French research funding agency, through the
CANAR project (ANR-06-BLAN-0383-03).

Many solvers use an AC-5 based propagation scheme [23]. We call them event-
based solvers. Each propagator is called according to the events that occur in
the domains of the variables involved in its constraint. For instance, an event
may be a value deleted by another constraint. At each node of the search tree,
the pruning is performed within the constraints. The fixed point is obtained by
propagating events among all the constraints. In this context, generalized arc-
consistency (GAC) is, a priori, the highest level of local consistency that can be
enforced (all propagators are complete).

On the other hand, local consistencies that are stronger than GAC [9, 6] re-
quire to take into account several constraints at a time in order to be enforced.
Therefore, it is considered that such strong consistencies cannot easily be inte-
grated into CP toolkits, especially event-based solvers. Toolkits do not feature
those consistencies,4 and they are not used for solving real-life problems.

This article demonstrates that strong local consistencies are wrongly excluded
from CP tools. We present a new generic paradigm to add strong local consis-
tencies to the set of features of constraint solvers. Our idea is to define a global
constraint [7, 1, 19], which encapsulates a subset of constraints of the model. The
strong consistency is enforced on this subset of constraints. Usually, a global con-
straint represents a sub-problem with fixed semantics. It is not the case for our
global constraint: it is used to apply a propagation technique on a given subset
of constraints, as it was done in [20] in the context of over-constrained problems.
Our scheme may be connected to BessiÃ¨re & RÃ c©gin’s “on the fly” subprob-
lem solving [5]. However, there is a fundamental divergence as our scheme is
aimed at encoding strong consistencies. Thus, we keep a local evaluation of the
supports for each constraint in the encapsulated model.

This approach provides some new possibilities compared with the state of the
art. A first improvement is the ability to use different levels of consistency for
different subsets of constraints in the same constraint model. This feature is an
alternative to the heuristics for dynamically switching between different levels
of consistency during search [21]. A second one is to apply strong consistencies
to all kinds of constraints, including user-defined constraints or arithmetical
expressions. Finally, within the global constraint, it is possible to define any
strategy for handling events. One may order events variable per variable instead
of considering successively each encaspulated constraint. Event-based solvers
generally do not provide such a level of precision.

We experiment our framework with the Max-RPC strong consistency [8],
using the Choco CP solver [15]. We use a coarse-grained algorithm for Max-
RPC, called Max-RPCrm [25]. This algorithm exploits backtrack-stable data
structures in a similar way to AC-3rm [17].

Section 2 presents the background about constraint networks and local con-
sistencies useful to understand our contributions. Section 3 presents the generic
integration scheme and it specialization to specific strong local consistencies.
Section 4 describes Max-RPCrm and L-Max-RPCrm. Section 5 details the ex-
4 Some strong consistencies such as SAC [3] can be implemented using assignment
and propagation methods, and some solvers may feature such ones.

perimental evaluation of our work. Finally, we discuss the perspectives and we
conclude.

2 Background

A constraint network N is a triple (X ,D ,C) which consists of :
– a set of n variables X ,
– a set of domains D , where the domain dom(X) ∈ D of the variable X is the

finite set of at most d values that the variable X can take, and
– a set C of e constraints that specify the allowed combinations of values for

given subsets of variables.
A variable/value couple (X, v) will be denoted Xv. An instantiation I is a

set of variable/values couples. I is valid iff for any variable X involved in I,
v ∈ dom(X). A relation R of arity k is any set of instantiations of the form
{Xa, Yb, . . . , Zc}, where a, b, . . . , c are values from a given universe.

A constraint C of arity k is a pair (vars(C), rel(C)), where vars(C) is a set of
k variables and rel(C) is a relation of arity k. I[X] denotes the value of X in the
instantiation I. CXY ...Z denotes a constraint such that vars(C) = {X,Y, . . . , Z}.
Given a constraint C, an instantiation I of vars(C) (or of a superset of vars(C),
considering only the variables in vars(C)), satisfies C iff I ∈ rel(C). We say that
I is allowed by C.

A solution of a constraint network N (X ,D ,C) is an instantiation IS of all
variables in X such that (1.) ∀X ∈ X , IS [X] ∈ dom(X) (IS is valid), and
(2.) IS satisfies (is allowed by) all the constraints in C .

2.1 Local consistencies
Definition 1 (Support). Let C be a constraint and X ∈ vars(C). A support
for a value a ∈ dom(X) w.r.t. C is an instantiation I ∈ rel(C) such that I[X] =
a.

Definition 2 (Arc-consistency). Let C be a constraint and X ∈ vars(C).
Value a ∈ dom(X) is arc-consistent w.r.t. C iff it has a support in C. C is
arc-consistent iff ∀X ∈ vars(C), dom(X) is arc-consistent.
N (X ,D ,C) is arc-consistent iff ∀X ∈ X ,∀a ∈ dom(X),∀C ∈ C , a is arc-

consistent w.r.t. C.

Definition 3 (Closure). Let N (X ,D ,C) be a constraint network, Φ a local
consistency (e.g., AC) and C a set of constraints ⊆ C . Φ(D , C) is the closure
of D for Φ on C, i.e. the set of domains obtained from D where ∀X, all values
a ∈ dom(X) that are not Φ-consistent w.r.t. a constraint in C have been removed.

For GAC and for most consistencies, the closure is unique. In CP systems, a
propagator is associated with each constraint to enforce GAC or weaker forms of
local consistencies. On the other hand, local consistencies stronger than GAC [9,
6] require to take into account more than one constraint at a time to be enforced.
This fact have made them excluded from most of CP solvers, until now.

2.2 Strong local consistencies

This paper focuses on domain filtering consistencies [9], which only prune values
from domains and leave the structure of the constraint network unchanged.

Binary constraint networks. Firstly, w.r.t. binary constraint networks, as
it is mentioned in [6], (i, j)-consistency [11] is a generic concept that captures
many local consistencies. A binary constraint network is (i, j)-consistent iff it
has non-empty domains and any consistent instantiation of i variables can be
extended to a consistent instantiation involving j additional variables. Thus, AC
is a (1, 1)-consistency.

A binary constraint network N that has non empty domains is :

Path Consistent (PC) iff it is (2, 1)-consistent.
Path Inverse Consistent (PIC) [12] iff it is (1, 2)-consistent.
Restricted Path Consistent (RPC) [2] iff it is (1, 1)-consistent and for all

values a that have a single consistent extension b to some variable, the pair
of values (a, b) forms a (2, 1)-consistent instantiation.

Max-Restricted Path Consistent (Max-RPC) [8] iff it is (1, 1)-consistent
and for each valueXa, and each variable Y ∈X \X, one consistent extension
Yb of Xa is (2, 1)-consistent (that is, can be extended to any third variable).

Singleton Arc-Consistent (SAC) [3] iff each value is SAC, and a value Xa

is SAC if the subproblem built by assigning a to X can be made AC (the
principle is very close to shaving, except that here the whole domains are
considered).

Non-binary constraint networks. Concerning non binary constraint net-
works, relational arc- and (i, j)-consistencies [10] provide the concepts useful to
extend local consistencies defined for binary constraint networks to the non-
binary case. A constraint network N that has non empty domains is:

Relational AC (relAC) iff any consistent assignment for all but one of the
variables in a constraint can be extended to the last variable, so as to satisfy
the constraint.

Relational (i, j)-consistent iff any consistent instantiation for i of the vari-
ables in a set of j constraints can be extended to all the variables in the
set.

From these notions, new domain filtering consistencies for non-binary con-
straints inspired by the definitions of RPC, PIC and Max-RPC were proposed
in [6]. Moreover, some interesting results were obtained using pairwise consis-
tency. A constraint network N that has non empty domains is :

Pairwise Consistent (PWC) [14] iff it has no empty relations and any lo-
cally consistent instanciation from the relation of a constraint can be consis-
tently extended to any other constraint that intersects with this. One may
apply both PWC and GAC.

Fig. 1. A strong consistency global constraint CΦ, used to enforce the strong local
consistency on a subset of constraints C Φ. N ′ is the new network obtained when
replacing C Φ by the global constraint.

Pairwise Inverse Consistent (PWIC) [22] iff for each value Xa, there is a
support for a w.r.t. all constraints involving X, such that the supports in all
constraints that overlap on more variables than X have the same values.

3 A Global constraint for Domain filtering consistencies

This section presents an object-oriented generic scheme for integrating domain
filtering consistencies in constraint solvers, and its specialization for Max-RPC.
Given a local consistency Φ, the principle is to deal with the subset C Φ of
constraints on which Φ should be applied, within a new global constraint CΦ
added to the constraint network. Constraints in C Φ are connected to CΦ instead
of being included into the initial constraint networkN (see Figure 1). In this way,
events related to constraints in C Φ are handled in a closed world, independently
from the propagation queue of the solver.

3.1 A generic scheme

As it is depicted by Figure 2, AbstractStrongConsistency is the abstract class
that will be concretely specialized for implementing CΦ, the global constraint
that enforces Φ. The constraint network corresponding to C Φ is stored within this
global constraint. In this way, we obtain a very versatile framework to implement
any consistency algorithm within the event-based solver.

We encapsulate the constraints and variables of the original network in order
to rebuild the constraint graph involving only the constraints in C Φ, thanks to
SCConstraint (Strong Consistency Constraint) and SCVariable (Strong Con-
sistency Variable) classes. In Figure 1, in N ′ all constraints of C Φ are discon-
nected from the original variables of the solver. Variables of the global constraint
are encapsulated in SCVariables, and the constraints in SCConstraints. In N ′,
variable Z is connected to the constraints CUZ , CWZ and CΦ from the point on
view of the solver. Within the constraint CΦ, the SCVariable Z is connected to
the dotted SCConstraints towards the SCVariables T, V, X and Y.

AbstractStrongConsistency

SCConstraint SCVariable

IterableConstraint SolverVariable
Solver events

* *
* *

1 1
*

Fig. 2. UML Class diagram [13] of the integration of strong local consistencies into
event-based solvers. Arrows describe association relations with cardinalities, either
one (1) or many (*).

Note that the original constraints of the problem can be kept in place, so
that they can perform their standard pruning task before the stronger consis-
tency is applied. For best efficiency, however, the solver should feature constraint
prioritization (see e.g., [26]): propagating the weaker constraints after the strong
consistency constraint would be useless.

Mapping the constraints. We need to identify a lowest common denomi-
nator among local consistencies, which will be implemented using the services
provided by the constraints of the solver. In Figure 2, this is materialized by the
abstract class IterableConstraint. Within solvers, and notably event-based
solvers, constraints are implemented with propagators. While some consistencies
such as SAC can be implemented using those propagators, this is not true for
most other consistencies. Indeed, the generic concepts that capture those con-
sistencies are (relational) (i, j)-consistencies (see section 2.2). Therefore, they
rather rely on the notion of allowed and valid instantiations, and it is required
to be able to iterate over and export these, as it is performed to handle logi-
cal connectives in [18]. Moreover, algorithms that seek optimal worst-case time
complexities memorize which instantiations have already been considered. This
usually requires that a given iterator over the instantiations of a constraint al-
ways delivers the instantiations in the same order (generally lexicographic), and
the ability to start the iteration from any given instantiation.

To give access to and iterate over the supports, the methods firstSupport
and nextSupport are specified in IterableConstraint, a subclass of the ab-
stract constraint class of the solver.

Generic iterators. The firstSupport and nextSupport services are not usually
available in most constraint solvers. However, a generic implementation can be

SolverConstraint
check
propagate

IterableConstraint
firstSupport
nextSupport

Adapter

firstSupport
nextSupport

1

Fig. 3. A generic implementation of support iterator functions, given the constraints
provided by a solver. Following the UML specifications, open triangle arrows describe
generalization relations.

devised, either by relying on constraint checkers5 (all valid instantiations are
checked until an allowed one is found), or by using directly the propagator of
the constraint. To perform this, one can simply build a search tree which enu-
merates the solutions to the CSP composed of the constraint and the variables
it involves. These implementations are wrapped in an Adapter class that spe-
cializes the required IterableConstraint superclass, and handles any solver
constraint with a constraint checker, as depicted by Figure 3. In this way, no
modification is made on the constraints of the solver.

Specialized iterators. For some constraints, more efficient, ad-hoc algorithms for
firstSupport and nextSupport functions can be provided (e.g., for positive
table constraints [4]). As IterableConstraint specializes SolverConstraint
(see Figure 3), it is sufficient to specialize IterableConstraint for this purpose.

Some strong consistencies such as Path Consistency may be implemented by
directly using the propagators of the constraints [16]. Our framework also allows
these implementations, since the original propagators of the constraints are still
available.

Mapping the variables. Mapping the variables is simpler, as our framework
only requires basic operations on domains, i.e., iterate over values in the current
domain and remove values. Class SCVariable is used for representing the con-
straint subnetwork (vars(CΦ),D ,C Φ). A link is kept with the solver variable for
operation on domains.
5 A constraint checker checks whether a given instantiation is allowed by the constraint
or not.

AbstractStrongConsistency

SCConstraint SCVariable

MaxRPCMaxRPCConstraint MaxRPCVariable

* *
* *

Fig. 4. Diagram of the integration of Max-RPC into event-based solvers.

The main feature of SCVariable is to “hide” the external constraints from
the point of view of the AbstractStrongConsistency class implementations.
Moreover, it may prove to be very useful to specialize the SCVariable class to
add data structures required by the strong consistency implementation.

Variable degree-based heuristics. Some popular variable ordering heuristics
for binary constraints networks, such as Brelaz, dom/ddeg or dom/wdeg, rely
on the structure of the constraint graph in order to select the next variable
to instantiate. Since constraints in C Φ are not connected to the model, they
are no longer taken into account by the heuristics of the solver. To overcome
this issue, we made the heuristics ask directly for the score of a variable to the
AbstractStrongConsistency constraints that imply this variable. The global
constraint is thus able to compute the corresponding dynamic (weighted) degrees
of each variable within their subnetwork C Φ.

3.2 A concrete specialization: Max-RPC

Figure 4 depicts the specialization of our framework to a particular domain
filtering consistency for binary networks, Max-RPC [8]. The class MaxRPC de-
fines the global constraint that will be used in constraint models. It extends the
abstract class AbstractStrongConsistency to implement the propagation al-
gorithm of Max-RPC. Moreover, implementing Max-RPC requires to deal with
3-cliques in the constraint graph, to check extensions of a consistent instantia-
tion to any third variable. SCConstraint and SCVariable classes are specialized
to efficiently manipulate 3-cliques.

4 A coarse grained algorithm for Max-RPC

This section presents the implementation of Max-RPC we used in section 5 to
experiment our approach.

Algorithm 1: MaxRPC(P = (X ,C), Y)
Y : the set of variables modified since the last call to MaxRPC
Q ← Y ;1
while Q 6= ∅ do2

pick X from Q ;3
foreach Y ∈ X | ∃CXY ∈ C do4

foreach v ∈ dom(Y) do if revise(CXY , Yv, true) then Q ← Q ∪ {Y };5

foreach (Y,Z) ∈ X 2 | ∃(CXY , CY Z , CXZ) ∈ C 3 do6
foreach v ∈ dom(Y) do if revisePC(CY Z , Yv, X) then Q ← Q ∪ {Y };7
foreach v ∈ dom(Z) do if revisePC(CY Z , Zv, X) then Q ← Q ∪ {Z};8

Algorithm 2: revisePC(CY Z , Ya, X): boolean
Y : the variable to revise because PC supports in X may have been lost
if pcRes[CY Z , Ya][X] ∈ dom(X) then return false ;1
b← findPCSupport(Ya, Zlast[CY Z ,Ya], X) ;2
if b = ⊥ then return revise(CY Z , Ya, false) ;3
pcRes[CY Z , Ya][X]← b; return false;4

Max-RPCrm [25] is a coarse-grained algorithm for Max-RPC. This algorithm
exploits backtrack-stable data structures inspired from AC-3rm [17]. rm stands
for multidirectional residues; a residue is a support which has been stored dur-
ing the execution of the procedure that proves that a given value is AC. During
forthcoming calls, this procedure simply checks whether that support is still valid
before searching for another support from scratch. The data structures are stable
on backtrack (they do not need to be reinitialized nor restored), hence a minimal
overhead on the management of data. Despite being theoretically suboptimal in
the worst case, Lecoutre & Hemery showed in [17] that AC-3rm behaves better
than the optimal algorithm in most cases. In [25], authors demonstrate that us-
ing a coarse-grained approach is also especially interesting for the strong local
consistency Max-RPC. With g being the maximal number of constraints involv-
ing a single variable, c the number of 3-cliques and s the maximal number of
3-cliques related to the same constraint (s < g < n and e ≤ ng/2), the worst-case
time complexity for Max-RPCrm is O(eg+ ed3 + csd4) and its space complexity
is O(ed+ cd).

L-Max-RPCrm is a variant of Max-RPCrm that computes a relaxation of
Max-RPC with a worst-case time complexity in O(eg + ed3 + cd4) and a space
complexity in O(c + ed) (that is, a space complexity very close to best AC
algorithms). The pruning performed by L-Max-RPCrm is strictly stronger than
that of AC.

Algorithms 1 to 4 describe Max-RPCrm and L-Max-RPCrm. In this algo-
rithm, Lines 6-8 of Algorithm 1 and Lines of 5-8 of Algorithm 3 are added to a
standard AC-3rm algorithm. L-Max-RPCrm removes the memory and time over-
head caused by the pcRes data structure and the calls to the revisePC function.

Algorithm 3: revise(CXY , Ya, supportIsPC): boolean
Ya: the value of Y to revise against CXY – supports in X may have been lost
supportIsPC : false if one of pcRes[CXY , Ya] is no longer valid
if supportIsPC∧res[CXY , Ya] ∈ dom(X) then return false ;1
b← firstSupport(CXY , {Ya})[X] ;2
while b 6= ⊥ do3

PConsistent← true ;4
foreach Z ∈ X | (X,Y, Z) form a 3-clique do5

c← findPCSupport(Ya, Xb, Z) ;6
if c = ⊥ then PConsistent ← false ; break;7
currentPcRes[Z]← c ;8

if PConsistent then9
res[CXY , Ya]← b ; res[CXY , Xb]← a ;10
pcRes[CXY , Ya]← pcRes[CXY , Xb]← currentPcRes ;11
return false ;12

b← nextSupport(CXY , {Ya}, {Xb, Ya})[X] ;13

remove a from dom(Y) ; return true ;14

Algorithm 4: findPCSupport(Xa, Yb, Z): value
c1 ← firstSupport(CXZ , {Xa})[Z] ;1
c2 ← firstSupport(CY Z , {Yb})[Z] ;2
while c1 6= ⊥ ∧ c2 6= ⊥ ∧ c1 6= c2 do3

if c1 < c2 then4
c1 ← nextSupport(CXZ , {Xa}, {Xa, Zc2−1})[Z] ;5

else6
c2 ← nextSupport(CY Z , {Yb}, {Yb, Zc1−1})[Z] ;7

if c1 = c2 then return c1 ;8
return ⊥ ;9

The principle is to modify Algorithm 1 by removing the foreach do loop on
Lines 6-8. The revisePC function and pcRes data structure are no longer use-
ful and can be removed, together with Lines 8 and 11 of Algorithm 3 (greyed
parts in the algorithms). The obtained algorithm achieves an approximation of
Max-RPC, which is stronger than AC. It ensures that all the values that were
not Max-RPC before the call to L-Max-RPCrm will be filtered. The consistency
enforced by L-Max-RPCrm in not monotonous and will depend on the order
in which the modified variables are picked from Q, but its filtering power is
only slightly weaker than that of Max-RPC on random problems, despite the
significant gains in space and time complexities.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

cp
u

tim
e

(s
)

0

5M

10M

15M

20M

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

m
em

or
y

(b
yt

es
)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0.55 0.6 0.65 0.7 0.75 0.8 0.85

AC-3rm

Max-RPCrm

L-Max-RPCrm

0

10M

20M

30M

40M

50M

60M

 0.55 0.6 0.65 0.7 0.75 0.8 0.85

0
20
40
60
80

100

 0.6 0.65 0.7 0.75 0.8 0.85 0.9

%
 f

ilt

0
20
40
60
80

100

 0.55 0.6 0.65 0.7 0.75 0.8 0.85

(200, 30, 15%, t) (200, 30, 30%, t)

Fig. 5. Initial propagation: CPU time, memory and % of removed values against tight-
ness on homogeneous random problems (200 variables, 30 values, 15/30% density).

5 Experiments

The aim of our experiments is to show the practicability of our approach. We
evaluate (1.) the eventual overload of the integration, and (2.) the interest of
mixing various consistencies, as is made possible thanks to our scheme.

We implemented the diagram of Figure 4 in Choco [15], using the algorithm
for Max-RPC described in section 4. In our experiments, Max-RPCrm and L-
Max-RPCrm are compared to Choco’s native AC-3rm filtering algorithm.

5.1 Evaluating the overload

On the figures, each point is the median result over 50 generated binary random
problem of various characteristics. A binary random problem is characterized
by a quadruple (n, d, γ, t) whose elements respectively represent the number of
variables, the number of values, the density6 of the constraint graph and the
tightness7 of the constraints.

Single propagation. Figure 5 compares the time and memory used for the
initial propagation on rather large problems (200 variables, 30 values), as well
as the percentage of removed values. In our experiments, only constraints that
form a 3-clique are mapped to the global constraint. A low density leads to a
6 The density is the proportion of constraints in the graph w.r.t. the maximal number
of possible constraints, i.e. γ = e/

(
n
2

)
.

7 The tightness is the proportion of instantiations forbidden by each constraint.

0
2
4
6
8

10
12
14
16
18
20

 0.62 0.63 0.64 0.65 0.66 0.67 0.68

cp
u

tim
e

(s
)

0
5k

10k
15k
20k
25k
30k
35k

 0.62 0.63 0.64 0.65 0.66 0.67 0.68

no
de

s

0
20
40
60
80

100
120
140

 0.65 0.66 0.67 0.68 0.69 0.7 0.71

AC-3rm

Max-RPCrm

L-Max-RPCrm

0
20k
40k
60k
80k

100k
120k
140k
160k
180k

 0.65 0.66 0.67 0.68 0.69 0.7 0.71

(105, 20, 5%, t) (105, 25, 5%, t)

0
10
20
30
40
50
60
70
80
90

100

 0.61 0.62 0.63 0.64 0.65 0.66 0.67

cp
u

tim
e

(s
)

0
20k
40k
60k
80k

100k
120k
140k
160k

 0.61 0.62 0.63 0.64 0.65 0.66 0.67

no
de

s

0
50

100
150
200
250
300
350
400
450
500

 0.56 0.57 0.58 0.59 0.6 0.61 0.62

0
100k
200k
300k
400k
500k
600k
700k
800k
900k

 0.56 0.57 0.58 0.59 0.6 0.61 0.62

(110, 20, 5%, t) (105, 20, 5.5%, t)

Fig. 6. Full search: cpu time and nodes against tightness on homogeneous random
problems (105-110 variables, 20-25 values).

low number of 3-cliques, hence experimental results are coherent with theoretical
complexities.

Full search. Figure 6 depicts experiments with a systematic search algorithm,
where the various levels of consistency are maintained throughout search. The
variable ordering heuristic is dom/ddeg (the process of weighting constraints
with dom/wdeg is not defined when more than one constraint lead to a domain
wipeout). We use the problem (105, 20, 5%, t) as a reference (top left graphs)
and increase successively the number of values (top right), of variables (bottom
left) and density (bottom right).

Results in [8, 25] showed that maintaining Max-RPC in a dedicated solver
was interesting for large and sparse problems, compared with maintaining AC.
Our results show that encoding Max-RPC within a global constraint leads to
the same conclusions, hence that our scheme has no incidence on computation
costs.

AC-3rm L-Max-RPCrm AC-3rm+L-Max-RPCrm

(35, 17, 44%, 31%) cpu (s) 6.1 11.6 non
nodes 21.4k 8.6k applicable

(105, 20, 5%, 65%) cpu (s) 20.0 16.9 non
nodes 38.4 k 19.8 k applicable

(35, 17, 44%, 31%)
+(105, 20, 5%, 65%)

cpu (s) 96.8 103.2 85.1
nodes 200.9k 107.2k 173.4k

(110, 20, 5%, 64%) cpu (s) 73.0 54.7 non
nodes 126.3k 56.6k applicable

(35, 17, 44%, 31%)
+(110, 20, 5%, 64%)

cpu (s) 408.0 272.6 259.1
nodes 773.0k 272.6k 316.5k

Table 1. Mixing two levels of consistency in the same model

5.2 Mixing local consistencies

A new feature provided by our approach is the ability to mix various levels of
local consistency for solving a given constraint network, each on some a priori
disjoint subsets of constraints.8

Table 1 shows the effectiveness of the new possibility of mixing two levels of
consistency within the same model. The first two row corresponds to the median
results over 50 instances of problems (35, 17, 44%, 31%) and (105, 20, 5%, 65%).
The first problem is better resolved by using AC-3rm while the second one shows
better results with L-Max-RPCrm.

The third row corresponds to instances where two problems are concatened
and linked with a single additional loose constraint. On the last two columns,
we maintain AC on the denser part of the model, and L-Max-RPC on the rest.
The dom/ddeg variable ordering heuristic will lead the search algorithm to solve
firstly the denser, satisfiable part of problem, and then thrashes as it proves that
the second part of the model is unsatisfiable.

Our results show that mixing the two consistencies entails a faster solving,
which emphasizes the interest of our approach. The last two rows present the
results with larger problems.

6 Conclusion & Perspectives

This paper presented a generic scheme for adding strong local consistencies to
the set of features of constraint solvers. This technique allows a solver to use
different levels of consistency for different subsets of constraints in the same
model. The soundness of this feature is validated by our experiments. A major
8 Such constraints can share variables.

interest of our schema is that strong consistencies can be applied with different
kinds of constraints, including user-defined constraints.

Although our contribution is not restricted to event-based solvers, we un-
derline that an important motivation for providing this scheme was to bridge
the gap between strong consistencies and event-based constraint toolkits. Such
toolkits put together many scientific contributions of the community. They pro-
vide users with advanced APIs that allow to use a catalog of global constraints
with powerful filtering algorithms, to implement new constraints, to define spe-
cific search strategies, to hybrid CP with other solving techniques such as Local
Search (e.g., Comet [24]), or to integrate explanations (e.g., Choco [15]). Our
approach adds to this list of features the use of strong consistencies.

Future works include the practical use of our framework with other strong
local consistencies, as well as a study of some criteria for decomposing a con-
straint network, in order to automatize the use of different levels of consistency
for different subsets of constraints. This second perspective may allow to link
our approach with the heuristics for adapting the level of consistency during the
search process [21].

Further, since a given local consistency can be applied only on a subset of
constraints, a perspective opened by our work is to identify specific families of
constraints for which a given strong consistency can be achieved more efficiently.

References

1. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. Tech-
nical Report T2005-08, SICS, 2005.

2. P. Berlandier. Improving domain filtering using restricted path consistency. In
Proceedings of IEEE-CAIA’95, 1995.

3. C. Bessière and R. Debruyne. Theoretical analysis of singleton arc consistency and
its extensions. Artificial Intelligence, 172(1):29–41, 2008.

4. C. Bessière and J.-C. Régin. Arc consistency for general constraint networks:
preliminary results. In Proceedings of IJCAI’97, 1997.

5. C. Bessière and J.-C. Régin. Enforcing arc consistency on global constraints by
solving subproblems on the fly. In CP, pages 103–117, 1999.

6. C. Bessière, K. Stergiou, and T. Walsh. Domain filtering consistencies for non-
binary constraints. Artificial Intelligence, 172(6-7):800–822, 2008.

7. C. Bessière and P. van Hentenryck. To be or not to be... a global constraint. In
Proceedings CP’03, pages 789–794. Springer, 2003.

8. R. Debruyne and C. Bessière. From restricted path consistency to max-restricted
path consistency. In Proceedings of CP’97, pages 312–326, 1997.

9. R. Debruyne and C. Bessière. Domain filtering consistencies. Journal of Artificial
Intelligence Research, 14:205–230, 2001.

10. R. Dechter and P. van Beek. Local and global relational consistency. Theoretical
Computer Science, 173(1):283–308, 1997.

11. E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24–32, 1982.

12. E.C. Freuder and C.D. Elfe. Neighborhood inverse consistency preprocessing. In
AAAI/IAAI, Vol. 1, pages 202–208, 1996.

13. Object Management Group. Unified Modeling Language (UML). http://www.
omg.org/spec/UML/, 2000–2010.

14. P. Janssen, P. Jegou, B. Nouguier, and M.C. Vilarem. A filtering process for
general constraint-satisfaction problems: achieving pairwise-consistency using an
associated binary representation. In Proc. of IEEE International Workshop on
Tools for Artificial Intelligence, pages 420–427, 1989.

15. F. Laburthe, N. Jussien, et al. Choco: An open source Java constraint programming
library. http://choco.emn.fr/, 2008.

16. C. Lecoutre, S. Cardon, and J. Vion. Path Consistency by Dual Consistency. In
Proceedings of CP’2007, 2007.

17. C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In
Proceedings of IJCAI’2007, pages 125–130, 2007.

18. O. Lhomme. Arc-Consistency Filtering Algorithms for Logical Combinations of
Constraints. In Proceedings of CPAIOR’04, pages 209–224, 2004.

19. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings of AAAI’94, pages 362–367, 1994.

20. J-C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An original constraint based
approach for solving over constrained prolems. In Proc. CP’00, pages 543–548,
2000.

21. K. Stergiou. Heuristics for dynamically adapting propagation. In ECAI, pages
485–489, 2008.

22. K. Stergiou and T. Walsh. Inverse consistencies for non-binary constraints. Pro-
ceedings of ECAI, 6:153–157, 2006.

23. P. van Hentenryck, Y. Deville, and CM. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

24. P. van Hentenryck, L. Michel, A. See, et al. The Comet Programming Language
and System. http://www.comet-online.org, 2001–2007.

25. J. Vion and R. Debruyne. Light Algorithms for Maintaining Max-RPC During
Search. In Proceedings of SARA’09, 2009.

26. J. Vion and S. Piechowiak. Handling Heterogeneous Constraints in Revision Or-
dering Heuristics. In Proc. of the TRICS’2010 workshop held in conjunction with
CP’2010, 2010.

